
IS&T's 2000 PICS ConferenceIS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
Error Diffusion Using Linear Pixel Shuffling

Peter G. Anderson
Rochester Institute of Technology

Rochester, NY, USA
Abstract
Linear pixel shuffling error diffusion is a digital halfton-

ing algorithm that combines the linear pixel shuffling (LPS)
order of visiting pixels in an image with diffusion of quanti-
zation errors in all directions.

LPS uses a simple linear rule to produce a pixel ordering
giving a smooth, uniform probing of the image. This paper
elucidates that algorithm.

Like the Floyd-Steinberg algorithm, LPS error diffusion
enhances edges and retains high-frequency image informa-
tion. LPS error diffusion avoids some of the artifacts (“worm-
s,” “tears,” and “checkerboarding”) often associated with the
Floyd-Steinberg algorithm. LPS error diffusion requires the
entire image be available in memory; the Floyd-Steinberg al-
gorithm requires storage proportional only to a single scan
line.

1. Error Diffusion Halftone Production

The error diffusion algorithm transforms a gray scale image,
I, with pixel values in the interval [0:0; 1:0], to a black-and-
white image, B, with values in f0; 1g. The following pseudo-
code describes error diffusion:

for every pixel position i,j in I
if I[i][j] < 0.5

then B[i][j] = 0
else B[i][j] = 1

error = I[i][j] - B[i][j]
distribute the error among
unprocessed neighbors of i,j

The order of pixel visitation generally takes the form of raster
processing:

for (i = 0; i < i_max; i++) {
for (j = 0; j < j_max; j++) {

process pixel i,j
}

}

The input and output images dimensions arei max by j max.
Floyd and Steinberg’s error diffusion algorithm [4] follows
this pixel ordering and distributes the error to four unpro-
cessed neighbors of I[i][j] according to the kernel DFS :

DFS =
1

16

�
P 7

3 5 1

�
(1)
123
Figure 1: Floyd-Steinberg error diffusion. Notice the ìwormî arti-
facts at the ends, and ìtearingî in the middle. (All the ramp images
are 64� 256 pixels.)

where P denotes the pixel currently being processed.

I[i][j+1] += error * 7/16
I[i+1][j-1] += error * 3/16
I[i+1][j] += error * 5/16
I[i+1][j+1] += error * 1/16

This process produces bilevel images with visual appearance
capturing the full range and detail of the original image. This
is particularly effective in case the original image has a lot
of detail. The resulting images do, however, often contain
“worm” artifacts in very dark and very light regions, and a
“tearing” or “checkerboarding” where the image’s original
gray value was slowly varying around 0:25, 0:5, or 0:75; see
Fig. 1 (our ramp figures are presented here using enlarged
pixels–approximately 80dpi—in order to illustrate the results
of the algorithms and avoid transformations caused by un-
known printing processes; the proper viewing distance is 4–5
feet). Floyd-Steinberg error diffusion was also used to render
the “Woman with French Horn” in Fig. 2 (approx. 130dpi).

2. Linear Pixel Shuffling

Linear pixel shuffling (LPS) is a method for visiting image
pixels distributed evenly all over an image. LPS uses a simple
linear rule, given by matrix multiplication (modulo a param-
eter depending on the image size)

�
i

j

�
= M

�
x

y

�
(2)

The original image processing pseudocode uses Eq. (2), be-
coming:
1

IS&T's 2000 PICS Conference Copyright 2000, IS&T
Figure 2: Floyd-Steinberg error diffusion of "Woman with French
Horn" (image courtesy of Heidelberger Druckmaschinen A. G.).

for (x = 0; x < N; x++) {
for (y = 0; y < N; y++) {

multiply M * (x,y)’
to obtain (i,j)’;
process pixel i,j

}
}

The matrix M and the parameter N are described below.
Define the Fibonacci-like sequence G by the recurrence:

G0 = 0

G1 = 1

G2 = 1

Gn+1 = Gn +Gn�2 for n � 2 (3)

Terms G0 through G14 of this sequence are

0; 1; 1; 1; 2; 3; 4; 6; 9; 13; 19; 28; 41; 60; 88

We also need this sequence with negative subscripts (the def-
inition allows us to work backwards in the subscripts easily).
Terms G

�1 through G
�14 are

0; 1; 0;�1; 1; 1;�2; 0; 3;�2;�3; 5; 1;�8

For our algorithm, we round the image size up to a square of
side Gn (this is the N in the above pseudocode) and ignore
pixels that fall outside the actual image.
Define a Gn �Gn table T with entries defined as

Tpq = (pGn�2 + qGn�1) (mod Gn) (4)

Because
gcd(Gn�2; Gn�1; Gn) = 1 (5)

for all n, every number in 0; 1; 2; � � � ; Gn � 1 occurs in T ex-
actly Gn times. Here is a portion of the 88 � 88 table for
0 � p; q < 13.

0 60 32 4 64 36 8 68 40 12 72 44 16
41 13 73 45 17 77 49 21 81 53 25 85 57
82 54 26 86 58 30 2 62 34 6 66 38 10
35 7 67 39 11 71 43 15 75 47 19 79 51
76 48 20 80 52 24 84 56 28 0 60 32 4
29 1 61 33 5 65 37 9 69 41 13 73 45
70 42 14 74 46 18 78 50 22 82 54 26 86
23 83 55 27 87 59 31 3 63 35 7 67 39
64 36 8 68 40 12 72 44 16 76 48 20 80
17 77 49 21 81 53 25 85 57 29 1 61 33
58 30 2 62 34 6 66 38 10 70 42 14 74
11 71 43 15 75 47 19 79 51 23 83 55 27
52 24 84 56 28 0 60 32 4 64 36 8 68

A particularly nice feature of the table T is that values which
are numerically close are physically distant. Examine a 7� 7
block centered at one of the zeros in T :

49 21 81 53 25 85 57
2 62 34 6 66 38 10

43 15 75 47 19 79 51
84 56 28 0 60 32 4
37 9 69 41 13 73 45
78 50 22 82 54 26 86
31 3 63 35 7 67 39

Notice that the smaller numbers are not close to 0. Because T
was constructed using a simple linear rule, this phenomenon
holds for any value, not just zero; it is even more visible for
larger values of Gn.

The LPS pixel selection algorithm works by first visiting
the elements in the Gn � Gn square that correspond to the
positions (i; j) for which Tij = 0, followed by positions (i; j)
for which Tij = 1, and so on. We may express this in the
processing pseudocode:

for (x = 0; x < N; x++) {
process all N pixels i,j
such that T[i][j] = x

}

The matrix M that achieves this is

M =

�
G
�n+1 Gn�3

G
�n Gn�2

�
(6)

For example, using N = G14 = 88

M =

�
G
�13 G11

G
�14 G12

�
=

�
1 28
�8 41

�
(7)

IS&T's 2000 PICS ConferenceIS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
2.1. Mathematical Justification of the LPS Algorithm

The above algorithm processes all Gn �Gn image pixels for
the following reason. Let

�
i

j

�
=

�
G
�n+1 Gn�3

G
�n Gn�2

��
x

y

�
(8)

We will show that
Tij = x (9)

Multiplying out the above matrix formula, we have

Tij = iGn�2 + jGn�1 (10)

= (G
�n+1x+Gn�3y)Gn�2

+(G
�nx+Gn�2y)Gn�1 (11)

= (G
�n+1Gn�2 +G

�nGn�1)x

+(Gn�3Gn�2 +Gn�2Gn�1)y (12)

= (G
�n+1Gn�2 +G

�nGn�1)x (13)

+(Gn�3 +Gn�1)Gn�2y (14)

The values in Eq. (8–14) are all modulo Gn. One of the fac-
tors in (14) satisfies

Gn�3 +Gn�1 = Gn � 0 (mod Gn) (15)

by (3); so Tij is independent of y. The coefficient of x in (13)
satisfies

Gn�2G�n+1 +Gn�1G�n � 1 (mod Gn) (16)

for all n, because

Gn�2G�n+1 +Gn�1G�n +GnG�n+2 = 1 (17)

for all n; this is easily established by mathematical induction.
Finally, because three consecutive terms of the G sequence

are relatively prime (5), M

�
0
y

�
takes Gn distinct values for

0 � y < Gn. Linearity allows us to conclude that

�
i

j

�

ranges over all Gn �Gn pixel positions.

2.2. Other Applications of LPS

There are a wide variety of applications for LPS; most of
them are explained in detail in [2]. Here are several that per-
tain directly to image processing.

LPS was originally developed to aid development of com-
puter graphics image synthesis, especially fractal creation (see
[1]). By rendering pixels in the LPS order, a low resolution
indication of the eventual picture is almost immediately vis-
ible. Slow computers or ambitious programmers otherwise
produce images that can take hours to see—starting with the
extremely boring topmost rows of pixels.
323
Figure 3: An 88� 88 image with the �rst 968 (12.5%) of the pixels
marked black.

The pixel ordering for image rendering suggests an im-
age file format. The initial portion of such a file gives a low
resolution image; subsequent portions fill in the details.

Because LPS is linear, the pixels that are rendered earliest
can be magnified (“fat pixels”) to cover the entire image area
very early. Subsequent pixels can be magnified by smaller
factors, eventually not magnified at all. If there are constant
patches in the image, the later pixels often make no difference
to the image appearance—they do not need to be rendered or
stored at all. This observation leads to a lossless image com-
pression technique for text and line-drawing images that is
competitive with run-length encoding but has the useful prop-
erty that a prefix of the compressed file is a lossy compression
of the entire image.

The results of image morphology operations (dilation, ero-
sion, opening, closing) can be rapidly approximated by per-
forming the basic operations in LPS order. For some applica-
tions, an approximation that takes, say, 15% of the total time
may be sufficient.

The table T can be used as a halftone mask. Fig. 3 shows
an 88�88 image with the first 968 of the pixels marked. This
is the dot pattern associated with an LPS mask at gray level
0.125 (where 1.0 indicates black).

Images can be searched to locate objects (“Where’s Wal-
do?”) or gather image statistics, such as histogram estima-
tion. An infinite version of LPS is appropriate for Monte Car-
lo integration.
3

IS&T's 2000 PICS ConferenceIS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
Figure 4: The ramp rendered using LPS error diffusion.

3. LPS Error Diffusion

By visiting the pixels uniformly all over the image, LPS al-
lows us to diffuse the errors in all directions. For example,
we can use the kernel which John Szybist investigated for his
Computer Science Master’s Project [3]:

DLPS =
1

32

2
66664

1 1 1
1 2 3 2 1
1 3 P 3 1
1 2 3 2 1

1 1 1

3
77775 (18)

and distribute the error of the processed pixel P to 20 of its
neighbors.

In order not to loose any of the dispersed error, we need to
keep track of any neighborhood of a zero value in T (a 5� 5
neighborhood in this case) and note the positions in the kernel
corresponding to already quantized pixels. We thus update
the diffusion kernel after each completed inner loop (the y-
loop in our pseudocode), potentially replacing some non-zero
coefficient with a zero and updating the divisor (initially 32
here) correspondingly.

In addition to the Szybist filter (18) used for Figs. 4 and
5 we can use a wide variety of kernels; several are shown
in Fig. 6. Ramps rendered using these kernels are shown in
Fig. 7.

4. Comparisons and Conclusions

LPS error diffusion does eliminate worms, tearing, and check-
erboarding artifacts. Unfortunately, LPS halftoned images
appear to be mottled in comparison to Floyd-Steinberg half-
toned images.

The LPS halftoning algorithm requires that the entire im-
age be present in memory, in order to diffuse error in all di-
rections. Floyd-Steinberg only requires one or two scan lines
(depending on coding cleverness, to diffuse errors only to the
right and down). The number of operations in both cases is
linear in kernel size and number of image pixels.

The texture variations of images rendered by various LPS
halftoning kernels may present opportunities for achieving
good dot patterns of ink on paper that eludes most current
digital halftone systems.
423
Figure 5: Linear pixel shuf�ing error diffusion.

References
[1] Peter G. Anderson. Fast rendering. Computer Language, Feb

1993.

[2] Peter G. Anderson. Advances in linear pixel shuffling. In G. E.
Bergum, A. N. Philippou, and A. F. Horodam, editors, Con-
ference on Fibonacci Numbers and Their Applications, pages
1–21, Pullman, Washington, July, 1994.

[3] John Szybist. An error diffusion algorithm based on linear pixel
shuffling. Computer science master’s project, Rochester Insti-
tute of Technology, 1997.

[4] Robert Ulichney. Digital Halftoning. The MIT Press, 1987.
4

IS&T's 2000 PICS ConferenceIS&T's 2000 PICS ConferenceIS&T's 2000 PICS Conference Copyright 2000, IS&T
flat-3:

1 1 1
1 P 1
1 1 1

flat-5:

1 1 1 1 1
1 1 1 1 1
1 1 P 1 1
1 1 1 1 1
1 1 1 1 1

flat-7:

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 P 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

ring-5:

1 1 1 1 1
1 0 0 0 1
1 0 P 0 1
1 0 0 0 1
1 1 1 1 1

ring-7:

1 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 P 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 1 1 1 1 1

cross:

0 0 1 0 0
0 0 1 0 0
1 1 P 1 1
0 0 1 0 0
0 0 1 0 0

Figure 6: A variety of kernels for LPS error diffusion.
523
Figure 7: LPS error diffusion using kernels: �at-3, �at-5, �at-7,
ring-5, ring-7, and cross.
5

